

INTERNATIONAL MATHEMATICS TOURNAMENT OF TOWNS

SENIOR PAPER: YEARS 11,12

Tournament 42, Northern Autumn 2020 (O Level)
(C)2020 Australian Mathematics Trust

Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. Each of the quadratic polynomials $P(x), Q(x)$ and $P(x)+Q(x)$ with real coefficients has a root of multiplicity 2 . Is it always the case that the roots are the same?
(3 points)
2. There are 10 points $X_{1}, X_{2}, \ldots, X_{10}$ on a line in that order. Each of the line segments $X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{9} X_{10}$ is the base of an isosceles triangle with the angle α opposite each such base. Suppose that all vertices opposite the corresponding bases of the triangles constructed lie on a common semicircle with diameter $X_{1} X_{10}$. Find α.
(4 points)
3. A positive integer N is a multiple of 2020. All digits of N are different and if any two of them are swapped, the new number is not a multiple of 2020. How many digits can N have? (All numbers are given in base 10).
(5 points)
4. The sides of a triangle are divided by the angle bisectors into two parts each. Is it always possible to form two triangles from the 6 line segments obtained in this way?
(5 points)
5. There are 101 coins placed on a circle, each coin weighs 10 or 11 g. Prove that there exists a coin such that the total weight of the k coins to the left of that coin is equal to the total weight of the k coins to the right of that coin if
(a) $k=50$.
(b) $k=49$.
